Effects of Human Disturbance on Amphibians and Macroinvertebrates in Gully Brook

NRCA Student: Jenique R. Blair
Community Partner: John Thomas

1Two Rivers Magnet High School 2Community Thomas

ABSTRACT

- Impervious surfaces, such as roads and buildings, are known to have severe impacts on waterways. Urban waterways are at risk of being degraded, potentially impacting other areas that are linked to outside the city.
- The objective of my study was to assess the impacts of urban disturbance on the biodiversity of macroinvertebrates and amphibians. In Hartford, the third largest city in Connecticut, we surveyed multiple points in Gully Brook along a human disturbed gradient. We quantified species richness and functional richness.
- The most important result is that there was less biodiversity in the more human disturbed areas. Regardless, we found species that represent different functional groups, which is why we should restore and protect these urban waterways.

INTRODUCTION

- Problem
 - Urban development negatively impacts local waterways.
 - The pollution that accumulates in water does not just stay in one place; it flows down the current, polluting other bodies of water before getting absorbed into the ground.
- Macroinvertebrates and amphibians are very sensitive to changes, so having or missing certain species can determine the water quality.
- Research Question
 - How does human disturbance affect macroinvertebrates and amphibian biodiversity (species richness and functional richness)?
- Importance
 - Human developments are increasing in CT and in many parts of the world. Research and understanding of urban impact on freshwater systems can be applied to other areas in the world.
- Predictions
 - Biodiversity will increase with less disturbance.

BIODIVERSITY

There are many ways to calculate biodiversity, such as counting the number of species (species richness), but not all species are the same. For example, macroinvertebrates have different feeding roles: shredders or collectors (important for decomposition), scrapers (herbivores important for regulating plant abundance), or predators (carnivores).

Would 2 communities with the same species richness have the same diversity?

By calculating the number of feeding groups (functional richness), we can better understand variation in biodiversity.

Community 1
- Number of species = 4
- Number of feeding groups = 1

Community 2
- Number of species = 4
- Number of feeding groups = 4

REFERENCES

ACKNOWLEDGEMENTS

- Laura Cisneros
- Cristina Macklem
- Katie Palazzi
- Riley Powell
- Jacqueline Murray
- Peter Blair

RESULTS

Although the patterns of species and functional richness were similar, they were not identical. There were some sites where multiple species fulfilled the same role, so there was lower functional richness. Figure 2 shows sites on the less degraded side to have more species richness and functional richness.

CONCLUSIONS

- This study provided baseline data for an important urban waterways.
- Even though we worked in a small site, the changes were noticeable as we moved to less disturbed areas.
- Because we found reproducing amphibians and macroinvertebrates from a variety of functional groups, my study shows the importance of urban waterways and the need to restore and protect them.